Answer :
To find the potential energy of a 25 kg bicycle resting at the top of a 3 m high hill, you can use the formula:
[tex]\[ \text{Potential Energy (PE)} = \text{mass} \times \text{gravity} \times \text{height} \][/tex]
where:
- mass ([tex]\(m\)[/tex]) is the mass of the bicycle, which is 25 kg,
- gravity ([tex]\(g\)[/tex]) is the acceleration due to gravity, typically [tex]\(9.8 \, \text{m/s}^2\)[/tex],
- height ([tex]\(h\)[/tex]) is the height of the hill, which is 3 m.
Now, substitute the given values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
When you multiply these numbers, the calculation becomes:
[tex]\[ \text{PE} = 25 \times 9.8 \times 3 = 735 \, \text{J} \][/tex]
Therefore, the potential energy of the bicycle is [tex]\(735 \, \text{Joules}\)[/tex].
The correct answer is [tex]\(735 \, \text{J}\)[/tex].
[tex]\[ \text{Potential Energy (PE)} = \text{mass} \times \text{gravity} \times \text{height} \][/tex]
where:
- mass ([tex]\(m\)[/tex]) is the mass of the bicycle, which is 25 kg,
- gravity ([tex]\(g\)[/tex]) is the acceleration due to gravity, typically [tex]\(9.8 \, \text{m/s}^2\)[/tex],
- height ([tex]\(h\)[/tex]) is the height of the hill, which is 3 m.
Now, substitute the given values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
When you multiply these numbers, the calculation becomes:
[tex]\[ \text{PE} = 25 \times 9.8 \times 3 = 735 \, \text{J} \][/tex]
Therefore, the potential energy of the bicycle is [tex]\(735 \, \text{Joules}\)[/tex].
The correct answer is [tex]\(735 \, \text{J}\)[/tex].