Answer :
To find the potential energy of the bicycle at the top of the hill, we can use the formula for gravitational potential energy:
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately 9.81 m/s[tex]\(^2\)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height (in meters).
Let's apply the given values to this formula:
1. Mass of the bicycle ([tex]\( m \)[/tex]): [tex]\( 25 \)[/tex] kg
2. Acceleration due to gravity ([tex]\( g \)[/tex]): [tex]\( 9.81 \)[/tex] m/s[tex]\(^2\)[/tex]
3. Height of the hill ([tex]\( h \)[/tex]): [tex]\( 3 \)[/tex] m
Plug these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
When we multiply these together, we get:
[tex]\[ \text{PE} = 735.75 \, \text{joules} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is approximately 735.75 J.
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately 9.81 m/s[tex]\(^2\)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height (in meters).
Let's apply the given values to this formula:
1. Mass of the bicycle ([tex]\( m \)[/tex]): [tex]\( 25 \)[/tex] kg
2. Acceleration due to gravity ([tex]\( g \)[/tex]): [tex]\( 9.81 \)[/tex] m/s[tex]\(^2\)[/tex]
3. Height of the hill ([tex]\( h \)[/tex]): [tex]\( 3 \)[/tex] m
Plug these values into the formula:
[tex]\[ \text{PE} = 25 \, \text{kg} \times 9.81 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
When we multiply these together, we get:
[tex]\[ \text{PE} = 735.75 \, \text{joules} \][/tex]
Therefore, the potential energy of the bicycle at the top of the hill is approximately 735.75 J.