Answer :
To find the potential energy of the bicycle, we use the formula:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height (in meters) above the reference point.
For this problem:
- The mass [tex]\( m \)[/tex] of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex].
- The height [tex]\( h \)[/tex] of the hill is [tex]\( 3 \, \text{m} \)[/tex].
Let's substitute these values into the formula:
1. Multiply the mass [tex]\( m = 25 \, \text{kg} \)[/tex] by the acceleration due to gravity [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]:
[tex]\[ 25 \times 9.8 = 245 \][/tex]
2. Now, multiply the result by the height [tex]\( h = 3 \, \text{m} \)[/tex]:
[tex]\[ 245 \times 3 = 735 \][/tex]
Thus, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex].
So, the correct answer is 735 J.
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height (in meters) above the reference point.
For this problem:
- The mass [tex]\( m \)[/tex] of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex].
- The height [tex]\( h \)[/tex] of the hill is [tex]\( 3 \, \text{m} \)[/tex].
Let's substitute these values into the formula:
1. Multiply the mass [tex]\( m = 25 \, \text{kg} \)[/tex] by the acceleration due to gravity [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]:
[tex]\[ 25 \times 9.8 = 245 \][/tex]
2. Now, multiply the result by the height [tex]\( h = 3 \, \text{m} \)[/tex]:
[tex]\[ 245 \times 3 = 735 \][/tex]
Thus, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex].
So, the correct answer is 735 J.