Answer :
To find the potential energy of a bicycle resting at the top of a hill, you can use the formula for gravitational potential energy:
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height of the object above the ground (in meters).
Let's plug in the values given in the problem:
1. Mass ([tex]\( m \)[/tex]) of the bicycle = 25 kg
2. Height ([tex]\( h \)[/tex]) of the hill = 3 m
3. Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
Substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Calculate the result:
[tex]\[ PE = 25 \times 9.8 \times 3 \][/tex]
When you calculate this, you get:
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle is 735 J.
[tex]\[ PE = m \times g \times h \][/tex]
where:
- [tex]\( PE \)[/tex] is the potential energy,
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex] on Earth),
- [tex]\( h \)[/tex] is the height of the object above the ground (in meters).
Let's plug in the values given in the problem:
1. Mass ([tex]\( m \)[/tex]) of the bicycle = 25 kg
2. Height ([tex]\( h \)[/tex]) of the hill = 3 m
3. Acceleration due to gravity ([tex]\( g \)[/tex]) = 9.8 m/s²
Substitute these values into the formula:
[tex]\[ PE = 25 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 3 \, \text{m} \][/tex]
Calculate the result:
[tex]\[ PE = 25 \times 9.8 \times 3 \][/tex]
When you calculate this, you get:
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
Therefore, the potential energy of the bicycle is 735 J.