Answer :
To find the potential energy of the bicycle at the top of the hill, we use the formula for potential energy, which is:
[tex]\[ PE = m \cdot g \cdot h \][/tex]
Where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height of the object (in meters).
Given that:
- The mass [tex]\( m \)[/tex] of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex],
- The height [tex]\( h \)[/tex] of the hill is [tex]\( 3 \, \text{m} \)[/tex],
- The acceleration due to gravity [tex]\( g \)[/tex] is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex],
We can substitute these values into the formula:
[tex]\[ PE = 25 \cdot 9.8 \cdot 3 \][/tex]
When we multiply these together, we get:
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
So, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex].
The correct answer is 735 J.
[tex]\[ PE = m \cdot g \cdot h \][/tex]
Where:
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( g \)[/tex] is the acceleration due to gravity (approximately [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]),
- [tex]\( h \)[/tex] is the height of the object (in meters).
Given that:
- The mass [tex]\( m \)[/tex] of the bicycle is [tex]\( 25 \, \text{kg} \)[/tex],
- The height [tex]\( h \)[/tex] of the hill is [tex]\( 3 \, \text{m} \)[/tex],
- The acceleration due to gravity [tex]\( g \)[/tex] is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex],
We can substitute these values into the formula:
[tex]\[ PE = 25 \cdot 9.8 \cdot 3 \][/tex]
When we multiply these together, we get:
[tex]\[ PE = 735 \, \text{Joules} \][/tex]
So, the potential energy of the bicycle at the top of the hill is [tex]\( 735 \, \text{J} \)[/tex].
The correct answer is 735 J.