High School

What is the pH of 5.00 g of Na2CO3 and 5.00 g of NaHCO3 diluted to 0.100 L?

Answer :

The pH of the solution is approximately 13.47.

To find the pH of the solution, we first need to determine the concentrations of the carbonate (CO3^2-) and bicarbonate [tex](HCO3^-)[/tex] ions in the solution, which result from the dissociation of Na2CO3 and NaHCO3, respectively.

Calculate the moles of Na2CO3 and NaHCO3:

Moles of Na2CO3[tex]: \( \frac{5.00 \text{ g}}{105.99 \text{ g/mol}} \) (molar mass of Na2CO3 is 105.99 g/mol)[/tex]

Moles of NaHCO3:[tex]\( \frac{5.00 \text{ g}}{84.01 \text{ g/mol}} \) (molar mass of NaHCO3 is 84.01 g/mol)[/tex]

[tex](CO3^2-)[/tex]

Calculate the total volume of the solution: 0.100 L

Calculate the concentration of each ion:

  • For Na2CO3: Since it dissociates into 2 moles of [tex]Na^+ ions[/tex] and 1 mole of [tex]CO3^2[/tex]- ions, the concentration of [tex]CO3^2[/tex]- ions is[tex]\( \frac{2 \times \text{moles of Na2CO3}}{\text{total volume of solution}} \).[/tex]
  • For NaHCO3: Since it dissociates into 1 mole of Na^+ ions and 1 mole of [tex]HCO3^-[/tex] ions, the concentration of [tex]HCO3^-[/tex] ions is[tex]\( \frac{\text{moles of NaHCO3}}{\text{total volume of solution}} \).[/tex]

Calculate the [tex]\( \text{pOH} \)[/tex] of the solution:

[tex]\( \text{pOH} = -\log{[\text{OH}^-]} \)[/tex]

Since [tex]\( \text{pOH} = -\log{[\text{CO3}^{2-}]} \) for Na2CO3 and \( \text{pOH} = -\log{[\text{HCO3}^-]} \) for NaHCO3[/tex], we'll calculate the pOH for each and then add them together.

Calculate the pH of the solution:

[tex]\( \text{pH} = 14 - \text{pOH} \)[/tex]

Let's go through these steps:

Calculate moles:

Moles of Na2CO3: [tex]\( \frac{5.00 \text{ g}}{105.99 \text{ g/mol}} \) ≈ 0.0471[/tex] mol

Moles of NaHCO3: [tex]\( \frac{5.00 \text{ g}}{84.01 \text{ g/mol}} \) ≈ 0.0595[/tex]mol

Calculate total volume:

[tex]\( \text{Total volume} = 0.100 \text{ L} \)[/tex]

Calculate concentrations:

[tex]\( [\text{CO3}^{2-}] = \frac{2 \times 0.0471 \text{ mol}}{0.100 \text{ L}} \)\\ \( [\text{HCO3}^-] = \frac{0.0595 \text{ mol}}{0.100 \text{ L}} \)[/tex]

Calculate [tex]\( \text{pOH} \):[/tex]

[tex]\( \text{pOH} = -\log{[\text{CO3}^{2-}]} - \log{[\text{HCO3}^-]} \)[/tex]

Calculate [tex]\( \text{pH} \):[/tex]

[tex]\( \text{pH} = 14 - \text{pOH} \)[/tex]

Let's do the calculations:

. Moles of Na2CO3

[tex]\( \frac{5.00 \text{ g}}{105.99 \text{ g/mol}} \) ≈ 0.0471 mol[/tex]

Moles of NaHCO3:

[tex]\( \frac{5.00 \text{ g}}{84.01 \text{ g/mol}} \) ≈ 0.0595 mol[/tex]

Total volume:

0.100 L

Concentrations:

[tex]\( [\text{CO3}^{2-}] = \frac{2 \times 0.0471 \text{ mol}}{0.100 \text{ L}} \) ≈ 0.942 M\\ \( [\text{HCO3}^-] = \frac{0.0595 \text{ mol}}{0.100 \text{ L}} \) ≈ 0.595 M\\[/tex]

[tex]\( \text{pOH} = -\log{0.942} - \log{0.595} \) ≈ 0.526[/tex]

[tex]\( \text{pH} = 14 - 0.526 \) ≈ 13.47[/tex]

So, the pH of the solution is approximately 13.47.