Answer :
To find the mass of the crate, we use the formula for force:
[tex]\[ F = ma \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
Given:
- The force [tex]\( F = 200 \, \text{N} \)[/tex],
- The acceleration [tex]\( a = 8 \, \text{m/s}^2 \)[/tex].
We need to solve for the mass [tex]\( m \)[/tex], so we rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.
[tex]\[ F = ma \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
Given:
- The force [tex]\( F = 200 \, \text{N} \)[/tex],
- The acceleration [tex]\( a = 8 \, \text{m/s}^2 \)[/tex].
We need to solve for the mass [tex]\( m \)[/tex], so we rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Substitute the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.