Answer :
To find the mass of the crate, we can use the formula for force:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
We need to rearrange this formula to solve for the mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{F}{a} \][/tex]
Given in the problem:
- The force ([tex]\( F \)[/tex]) is 200 Newtons (N).
- The acceleration ([tex]\( a \)[/tex]) is 8 meters per second squared ([tex]\( m/s^2 \)[/tex]).
Now, plug these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kilograms.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
We need to rearrange this formula to solve for the mass ([tex]\( m \)[/tex]):
[tex]\[ m = \frac{F}{a} \][/tex]
Given in the problem:
- The force ([tex]\( F \)[/tex]) is 200 Newtons (N).
- The acceleration ([tex]\( a \)[/tex]) is 8 meters per second squared ([tex]\( m/s^2 \)[/tex]).
Now, plug these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kilograms.