Answer :
To find the mass of the crate, we can use the formula [tex]\( F = ma \)[/tex], where [tex]\( F \)[/tex] is the force applied to an object, [tex]\( m \)[/tex] is the mass of the object, and [tex]\( a \)[/tex] is the acceleration.
Here's how you can solve the problem step-by-step:
1. Understand the given values:
- Force ([tex]\( F \)[/tex]) = 200 Newtons (N)
- Acceleration ([tex]\( a \)[/tex]) = 8 meters per second squared ([tex]\( m/s^2 \)[/tex])
2. Using the formula:
- We know that [tex]\( F = ma \)[/tex].
- We need to solve for mass ([tex]\( m \)[/tex]), so we rearrange the formula to find [tex]\( m \)[/tex]:
[tex]\[
m = \frac{F}{a}
\][/tex]
3. Substitute the values:
- Plug in the values for force and acceleration into the rearranged formula:
[tex]\[
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2}
\][/tex]
4. Calculate the mass:
- Divide 200 by 8:
[tex]\[
m = 25 \, \text{kg}
\][/tex]
Therefore, the mass of the crate is 25 kg.
Here's how you can solve the problem step-by-step:
1. Understand the given values:
- Force ([tex]\( F \)[/tex]) = 200 Newtons (N)
- Acceleration ([tex]\( a \)[/tex]) = 8 meters per second squared ([tex]\( m/s^2 \)[/tex])
2. Using the formula:
- We know that [tex]\( F = ma \)[/tex].
- We need to solve for mass ([tex]\( m \)[/tex]), so we rearrange the formula to find [tex]\( m \)[/tex]:
[tex]\[
m = \frac{F}{a}
\][/tex]
3. Substitute the values:
- Plug in the values for force and acceleration into the rearranged formula:
[tex]\[
m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2}
\][/tex]
4. Calculate the mass:
- Divide 200 by 8:
[tex]\[
m = 25 \, \text{kg}
\][/tex]
Therefore, the mass of the crate is 25 kg.