Answer :
Certainly! Let's solve the problem step by step.
We are given:
- A force (F) of 200 Newtons
- An acceleration (a) of 8 meters per second squared
We need to find the mass (m) of the crate using the formula:
[tex]\[ F = ma \][/tex]
First, let's rearrange the formula to solve for [tex]\( m \)[/tex].
[tex]\[ m = \frac{F}{a} \][/tex]
Now, we can plug in the given values:
[tex]\[ F = 200 \, \text{N} \][/tex]
[tex]\[ a = 8 \, \text{m/s}^2 \][/tex]
So,
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Performing the division:
[tex]\[ m = \frac{200}{8} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
So, the correct option is:
[tex]\( \boxed{25 \, \text{kg}} \)[/tex]
We are given:
- A force (F) of 200 Newtons
- An acceleration (a) of 8 meters per second squared
We need to find the mass (m) of the crate using the formula:
[tex]\[ F = ma \][/tex]
First, let's rearrange the formula to solve for [tex]\( m \)[/tex].
[tex]\[ m = \frac{F}{a} \][/tex]
Now, we can plug in the given values:
[tex]\[ F = 200 \, \text{N} \][/tex]
[tex]\[ a = 8 \, \text{m/s}^2 \][/tex]
So,
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Performing the division:
[tex]\[ m = \frac{200}{8} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
So, the correct option is:
[tex]\( \boxed{25 \, \text{kg}} \)[/tex]