Answer :
To find the mass of the crate, you can use Newton's Second Law of Motion, which is expressed by the formula:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied to the crate (in Newtons, N),
- [tex]\( m \)[/tex] is the mass of the crate (in kilograms, kg),
- [tex]\( a \)[/tex] is the acceleration of the crate (in meters per second squared, m/s²).
Given:
- The force [tex]\( F = 200 \)[/tex] N,
- The acceleration [tex]\( a = 8 \)[/tex] m/s².
You need to solve for the mass [tex]\( m \)[/tex]. Rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ m = \frac{200 \text{ N}}{8 \text{ m/s}²} \][/tex]
Compute the division:
[tex]\[ m = 25 \text{ kg} \][/tex]
Thus, the mass of the crate is:
[tex]\[ \boxed{25 \text{ kg}} \][/tex]
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied to the crate (in Newtons, N),
- [tex]\( m \)[/tex] is the mass of the crate (in kilograms, kg),
- [tex]\( a \)[/tex] is the acceleration of the crate (in meters per second squared, m/s²).
Given:
- The force [tex]\( F = 200 \)[/tex] N,
- The acceleration [tex]\( a = 8 \)[/tex] m/s².
You need to solve for the mass [tex]\( m \)[/tex]. Rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ m = \frac{200 \text{ N}}{8 \text{ m/s}²} \][/tex]
Compute the division:
[tex]\[ m = 25 \text{ kg} \][/tex]
Thus, the mass of the crate is:
[tex]\[ \boxed{25 \text{ kg}} \][/tex]