Answer :
To find the mass of the crate, we can use the formula:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
Given that:
- The force [tex]\( F \)[/tex] is 200 N,
- The acceleration [tex]\( a \)[/tex] is [tex]\( 8 \, \text{m/s}^2 \)[/tex],
we can rearrange the formula to solve for the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
Given that:
- The force [tex]\( F \)[/tex] is 200 N,
- The acceleration [tex]\( a \)[/tex] is [tex]\( 8 \, \text{m/s}^2 \)[/tex],
we can rearrange the formula to solve for the mass [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Perform the division:
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].