Answer :
To find the mass of the crate, we need to use the formula:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We are given:
- [tex]\( F = 200 \, \text{N} \)[/tex]
- [tex]\( a = 8 \, \text{m/s}^2 \)[/tex]
Our goal is to find the mass [tex]\( m \)[/tex]. To do this, we can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is 25 kg.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in Newtons),
- [tex]\( m \)[/tex] is the mass (in kilograms),
- [tex]\( a \)[/tex] is the acceleration (in meters per second squared).
We are given:
- [tex]\( F = 200 \, \text{N} \)[/tex]
- [tex]\( a = 8 \, \text{m/s}^2 \)[/tex]
Our goal is to find the mass [tex]\( m \)[/tex]. To do this, we can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is 25 kg.