Answer :
To find the mass of the crate, we can use the formula for force:
[tex]\[ F = ma \][/tex]
where [tex]\( F \)[/tex] is the force, [tex]\( m \)[/tex] is the mass, and [tex]\( a \)[/tex] is the acceleration.
In this problem, we are given:
- Force [tex]\( F = 200 \)[/tex] Newtons
- Acceleration [tex]\( a = 8 \)[/tex] meters per second squared
We need to find the mass [tex]\( m \)[/tex]. We can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.
[tex]\[ F = ma \][/tex]
where [tex]\( F \)[/tex] is the force, [tex]\( m \)[/tex] is the mass, and [tex]\( a \)[/tex] is the acceleration.
In this problem, we are given:
- Force [tex]\( F = 200 \)[/tex] Newtons
- Acceleration [tex]\( a = 8 \)[/tex] meters per second squared
We need to find the mass [tex]\( m \)[/tex]. We can rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kg.