Answer :
To find the mass of the crate, we can use the formula for force, which is:
[tex]\[ F = ma \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
We want to find the mass ([tex]\( m \)[/tex]), so we'll rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, let's substitute the given values into the formula:
- The force ([tex]\( F \)[/tex]) is 200 N (Newtons),
- The acceleration ([tex]\( a \)[/tex]) is [tex]\( 8 \, \text{m/s}^2 \)[/tex].
Substitute these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Now, calculate:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Thus, the mass of the crate is 25 kg.
[tex]\[ F = ma \][/tex]
Where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.
We want to find the mass ([tex]\( m \)[/tex]), so we'll rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, let's substitute the given values into the formula:
- The force ([tex]\( F \)[/tex]) is 200 N (Newtons),
- The acceleration ([tex]\( a \)[/tex]) is [tex]\( 8 \, \text{m/s}^2 \)[/tex].
Substitute these values into the formula:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Now, calculate:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Thus, the mass of the crate is 25 kg.