Answer :
To find the mass of the crate, we can use the formula for force, which is:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration of the object (in meters per second squared).
We are given:
- A force ([tex]\( F \)[/tex]) of 200 newtons,
- An acceleration ([tex]\( a \)[/tex]) of [tex]\( 8 \, \text{m/s}^2 \)[/tex].
We need to find the mass ([tex]\( m \)[/tex]) of the crate.
To solve for mass, we need to rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kilograms.
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied (in newtons),
- [tex]\( m \)[/tex] is the mass of the object (in kilograms),
- [tex]\( a \)[/tex] is the acceleration of the object (in meters per second squared).
We are given:
- A force ([tex]\( F \)[/tex]) of 200 newtons,
- An acceleration ([tex]\( a \)[/tex]) of [tex]\( 8 \, \text{m/s}^2 \)[/tex].
We need to find the mass ([tex]\( m \)[/tex]) of the crate.
To solve for mass, we need to rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, plug in the given values:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is 25 kilograms.