Answer :
Sure! Let's solve this step-by-step using the formula for force, which is [tex]\( F = ma \)[/tex].
In this formula:
- [tex]\( F \)[/tex] is the force applied, in Newtons (N).
- [tex]\( m \)[/tex] is the mass, in kilograms (kg).
- [tex]\( a \)[/tex] is the acceleration, in meters per second squared (m/s[tex]\(^2\)[/tex]).
We need to find the mass [tex]\( m \)[/tex].
The given values are:
- Force ([tex]\( F \)[/tex]) = 200 N
- Acceleration ([tex]\( a \)[/tex]) = 8 m/s[tex]\(^2\)[/tex]
To find the mass [tex]\( m \)[/tex], we rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is 25 kg.
Therefore, the correct answer is:
- 25 kg
In this formula:
- [tex]\( F \)[/tex] is the force applied, in Newtons (N).
- [tex]\( m \)[/tex] is the mass, in kilograms (kg).
- [tex]\( a \)[/tex] is the acceleration, in meters per second squared (m/s[tex]\(^2\)[/tex]).
We need to find the mass [tex]\( m \)[/tex].
The given values are:
- Force ([tex]\( F \)[/tex]) = 200 N
- Acceleration ([tex]\( a \)[/tex]) = 8 m/s[tex]\(^2\)[/tex]
To find the mass [tex]\( m \)[/tex], we rearrange the formula to solve for [tex]\( m \)[/tex]:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, substitute the given values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
[tex]\[ m = 25 \, \text{kg} \][/tex]
So, the mass of the crate is 25 kg.
Therefore, the correct answer is:
- 25 kg