Answer :
Sure, let's solve the problem step-by-step:
We are given:
- A force [tex]\( F \)[/tex] of 200 Newtons (N)
- An acceleration [tex]\( a \)[/tex] of 8 meters per second squared ([tex]\( m/s^2 \)[/tex])
We need to find the mass [tex]\( m \)[/tex] of the crate.
We use the formula that relates force, mass, and acceleration:
[tex]\[ F = m \cdot a \][/tex]
To isolate the mass [tex]\( m \)[/tex], we can rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, we can plug in the given values:
[tex]\[ F = 200 \, \text{N} \][/tex]
[tex]\[ a = 8 \, \text{m/s}^2 \][/tex]
Substitute these values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Calculate the result:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
So, the correct answer is:
- 25 kg
We are given:
- A force [tex]\( F \)[/tex] of 200 Newtons (N)
- An acceleration [tex]\( a \)[/tex] of 8 meters per second squared ([tex]\( m/s^2 \)[/tex])
We need to find the mass [tex]\( m \)[/tex] of the crate.
We use the formula that relates force, mass, and acceleration:
[tex]\[ F = m \cdot a \][/tex]
To isolate the mass [tex]\( m \)[/tex], we can rearrange the formula:
[tex]\[ m = \frac{F}{a} \][/tex]
Now, we can plug in the given values:
[tex]\[ F = 200 \, \text{N} \][/tex]
[tex]\[ a = 8 \, \text{m/s}^2 \][/tex]
Substitute these values into the equation:
[tex]\[ m = \frac{200 \, \text{N}}{8 \, \text{m/s}^2} \][/tex]
Calculate the result:
[tex]\[ m = 25 \, \text{kg} \][/tex]
Therefore, the mass of the crate is [tex]\( 25 \, \text{kg} \)[/tex].
So, the correct answer is:
- 25 kg