Answer :
We start with the exponential equation:
[tex]$$13^2 = 169.$$[/tex]
Recall that in general if we have an equation of the form
[tex]$$b^x = y,$$[/tex]
it can be rewritten in its logarithmic form as
[tex]$$\log_b(y) = x.$$[/tex]
Here, identifying the components we have:
- Base [tex]$b = 13$[/tex],
- Exponent [tex]$x = 2$[/tex],
- Result [tex]$y = 169$[/tex].
Thus, writing [tex]$13^2=169$[/tex] in logarithmic form gives:
[tex]$$\log_{13}(169) = 2.$$[/tex]
This corresponds to the answer: [tex]$\log_{13} 169=2$[/tex].
[tex]$$13^2 = 169.$$[/tex]
Recall that in general if we have an equation of the form
[tex]$$b^x = y,$$[/tex]
it can be rewritten in its logarithmic form as
[tex]$$\log_b(y) = x.$$[/tex]
Here, identifying the components we have:
- Base [tex]$b = 13$[/tex],
- Exponent [tex]$x = 2$[/tex],
- Result [tex]$y = 169$[/tex].
Thus, writing [tex]$13^2=169$[/tex] in logarithmic form gives:
[tex]$$\log_{13}(169) = 2.$$[/tex]
This corresponds to the answer: [tex]$\log_{13} 169=2$[/tex].