High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ What is the graph of the function [tex]$f(x) = x^3 + 9x^2 + 2x - 48$[/tex]?

Answer :

To graph the function [tex]\( f(x) = x^3 + 9x^2 + 2x - 48 \)[/tex], follow these steps:

1. Identify the Type of Function:
- The given function is a cubic polynomial (degree 3).

2. Find the Critical Points:
- To find critical points, we need the first derivative [tex]\( f'(x) \)[/tex]:
[tex]\[
f'(x) = \frac{d}{dx}(x^3 + 9x^2 + 2x - 48) = 3x^2 + 18x + 2
\][/tex]
- Set the first derivative to zero to find critical points:
[tex]\[
3x^2 + 18x + 2 = 0
\][/tex]
- Solve the quadratic equation for [tex]\( x \)[/tex] using the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[
x = \frac{-18 \pm \sqrt{18^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} = \frac{-18 \pm \sqrt{324 - 24}}{6} = \frac{-18 \pm \sqrt{300}}{6} = \frac{-18 \pm 10\sqrt{3}}{6} = \frac{-9 \pm 5\sqrt{3}}{3}
\][/tex]
- Thus, the critical points are:
[tex]\[
x = -3 \pm \frac{5\sqrt{3}}{3}
\][/tex]

3. Evaluate the Function at Critical Points:
- Use these [tex]\( x \)[/tex] values to find the corresponding [tex]\( y \)[/tex] values:
[tex]\[
f\left(-3 + \frac{5\sqrt{3}}{3}\right) \quad \text{and} \quad f\left(-3 - \frac{5\sqrt{3}}{3}\right)
\][/tex]
- Substitute back in to find [tex]\( f(x) \)[/tex] at these points for exact values or numerical approximations.

4. Find Intercepts:
- Y-Intercept: Set [tex]\( x = 0 \)[/tex]:
[tex]\[
f(0) = -48
\][/tex]
- X-Intercepts: For [tex]\( f(x) = 0 \)[/tex]:
[tex]\[
x^3 + 9x^2 + 2x - 48 = 0
\][/tex]
- Find the roots using methods like factoring, synthetic division, or numerical methods.

5. Analyze End Behavior:
- For [tex]\( x \rightarrow \infty \)[/tex] and [tex]\( x \rightarrow -\infty \)[/tex], cubic functions have:
[tex]\[
\text{As } x \rightarrow \infty, f(x) \rightarrow \infty
\][/tex]
[tex]\[
\text{As } x \rightarrow -\infty, f(x) \rightarrow -\infty
\][/tex]

6. Plot the Graph:
- Use the information from the steps above to sketch the graph.
- Mark the critical points, intercepts, and the general shape considering the end behavior.

By piecing this information together, you should be able to accurately sketch a graph of [tex]\( f(x) = x^3 + 9x^2 + 2x - 48 \)[/tex].