College

What is the following sum?

\[
2\left(\sqrt[3]{16 x^3 y}\right) + 4\left(\sqrt[3]{54 x^6 y^5}\right)
\]

\[
4x\left(\sqrt[3]{2y}\right) + 12x^2 y\left(\sqrt[3]{2y^2}\right)
\]

\[
8x\left(\sqrt[3]{xy}\right) + 12x^3 y^2\left(\sqrt[3]{6y}\right)
\]

\[
16x^3 y\left(\sqrt[3]{2y^2}\right)
\]

\[
48x^3 y\left(\sqrt[3]{2y}\right)
\]

Answer :

Let's break down the problem and solve it step by step to find the total sum of the given expressions:

We need to calculate the following sum:

1. [tex]\(2\left(\sqrt[3]{16x^3y}\right)\)[/tex]
2. [tex]\(4\left(\sqrt[3]{54x^6y^5}\right)\)[/tex]
3. [tex]\(4x(\sqrt[3]{2y})\)[/tex]
4. [tex]\(12x^2y\left(\sqrt[3]{2y^2}\right)\)[/tex]
5. [tex]\(8x(\sqrt[3]{xy})\)[/tex]
6. [tex]\(12x^3y^2(\sqrt[3]{6y})\)[/tex]
7. [tex]\(16x^3y\left(\sqrt[3]{2y^2}\right)\)[/tex]
8. [tex]\(48x^3y(\sqrt[3]{2y})\)[/tex]

Let's evaluate each term one by one:

1. First term: [tex]\(2\left(\sqrt[3]{16x^3y}\right)\)[/tex]
- Calculate [tex]\(\sqrt[3]{16x^3y} = (16x^3y)^{1/3}\)[/tex].
- This term simplifies to [tex]\(2 \times (16x^3y)^{1/3}\)[/tex].

2. Second term: [tex]\(4\left(\sqrt[3]{54x^6y^5}\right)\)[/tex]
- Calculate [tex]\(\sqrt[3]{54x^6y^5} = (54x^6y^5)^{1/3}\)[/tex].
- This term becomes [tex]\(4 \times (54x^6y^5)^{1/3}\)[/tex].

3. Third term: [tex]\(4x(\sqrt[3]{2y})\)[/tex]
- Calculate [tex]\(\sqrt[3]{2y} = (2y)^{1/3}\)[/tex].
- This becomes [tex]\(4x \times (2y)^{1/3}\)[/tex].

4. Fourth term: [tex]\(12x^2y\left(\sqrt[3]{2y^2}\right)\)[/tex]
- Calculate [tex]\(\sqrt[3]{2y^2} = (2y^2)^{1/3}\)[/tex].
- This becomes [tex]\(12x^2y \times (2y^2)^{1/3}\)[/tex].

5. Fifth term: [tex]\(8x(\sqrt[3]{xy})\)[/tex]
- Calculate [tex]\(\sqrt[3]{xy} = (xy)^{1/3}\)[/tex].
- This term is [tex]\(8x \times (xy)^{1/3}\)[/tex].

6. Sixth term: [tex]\(12x^3y^2(\sqrt[3]{6y})\)[/tex]
- Calculate [tex]\(\sqrt[3]{6y} = (6y)^{1/3}\)[/tex].
- This becomes [tex]\(12x^3y^2 \times (6y)^{1/3}\)[/tex].

7. Seventh term: [tex]\(16x^3y\left(\sqrt[3]{2y^2}\right)\)[/tex]
- Calculate [tex]\(\sqrt[3]{2y^2} = (2y^2)^{1/3}\)[/tex].
- This becomes [tex]\(16x^3y \times (2y^2)^{1/3}\)[/tex].

8. Eighth term: [tex]\(48x^3y(\sqrt[3]{2y})\)[/tex]
- Calculate [tex]\(\sqrt[3]{2y} = (2y)^{1/3}\)[/tex].
- This term is [tex]\(48x^3y \times (2y)^{1/3}\)[/tex].

After evaluating and simplifying each term, we sum up all these expressions to get:

```
20.158736798318x^3y(y^2)0.333333333333333 +
60.4762103949539
x^3y1.33333333333333 +
21.8054471139857
x^3y2.33333333333333 +
15.1190525987385
x^2y(y^2)0.333333333333333 +
5.03968419957949xy0.333333333333333 +
8x(xy)
0.333333333333333 +
5.03968419957949(x^3y)0.333333333333333 +
15.1190525987385
(x^6*y^5)0.333333333333333
```

These numerical approximations represent the final sum of the complex expression given the operations performed on each term.