Answer :
Let's convert the logarithmic equation to its exponential form.
The given equation is:
[tex]\[ z = \log_{94} y \][/tex]
The general form to convert a logarithmic equation [tex]\(\log_b(a) = c\)[/tex] to an exponential form is [tex]\( b^c = a \)[/tex].
Here, the base [tex]\(b\)[/tex] is 94, the logarithm [tex]\(c\)[/tex] is [tex]\(z\)[/tex], and the result [tex]\(a\)[/tex] is [tex]\(y\)[/tex].
Following the general form, we convert it as:
[tex]\[ 94^z = y \][/tex]
So, the exponential form of the equation [tex]\( z = \log_{94} y \)[/tex] is:
B) [tex]\( 94^z = y \)[/tex]
The given equation is:
[tex]\[ z = \log_{94} y \][/tex]
The general form to convert a logarithmic equation [tex]\(\log_b(a) = c\)[/tex] to an exponential form is [tex]\( b^c = a \)[/tex].
Here, the base [tex]\(b\)[/tex] is 94, the logarithm [tex]\(c\)[/tex] is [tex]\(z\)[/tex], and the result [tex]\(a\)[/tex] is [tex]\(y\)[/tex].
Following the general form, we convert it as:
[tex]\[ 94^z = y \][/tex]
So, the exponential form of the equation [tex]\( z = \log_{94} y \)[/tex] is:
B) [tex]\( 94^z = y \)[/tex]