College

What is the exponential form of the equation [tex]$z=\log _{94} y$[/tex]?

A. [tex]$94=z^y$[/tex]

B. [tex]$94^z=y$[/tex]

C. [tex]$94^y=z$[/tex]

D. [tex]$94=y^2$[/tex]

Answer :

Let's convert the logarithmic equation to its exponential form.

The given equation is:

[tex]\[ z = \log_{94} y \][/tex]

The general form to convert a logarithmic equation [tex]\(\log_b(a) = c\)[/tex] to an exponential form is [tex]\( b^c = a \)[/tex].

Here, the base [tex]\(b\)[/tex] is 94, the logarithm [tex]\(c\)[/tex] is [tex]\(z\)[/tex], and the result [tex]\(a\)[/tex] is [tex]\(y\)[/tex].

Following the general form, we convert it as:

[tex]\[ 94^z = y \][/tex]

So, the exponential form of the equation [tex]\( z = \log_{94} y \)[/tex] is:

B) [tex]\( 94^z = y \)[/tex]