High School

What is the difference of the polynomials?

[tex]\left(5x^3 + 4x^2\right) - \left(6x^2 - 2x - 9\right)[/tex]

A. [tex]-x^3 + 6x^2 + 9[/tex]

B. [tex]-x^3 + 2x^2 - 9[/tex]

C. [tex]5x^3 - 2x^2 - 2x - 9[/tex]

D. [tex]5x^3 - 2x^2 + 2x + 9[/tex]

Answer :

To subtract the polynomial
$$5x^3 + 4x^2$$
by
$$6x^2 - 2x - 9,$$
we begin by writing the expression:

$$
(5x^3 + 4x^2) - (6x^2 - 2x - 9).
$$

**Step 1. Distribute the minus sign:**

We multiply each term inside the second set of parentheses by $-1$:

$$
5x^3 + 4x^2 - 6x^2 + 2x + 9.
$$

**Step 2. Combine like terms:**

- The $x^3$ term: There is only one term: $5x^3$.
- The $x^2$ terms: $4x^2 - 6x^2$ gives $-2x^2$.
- The $x$ term: There is only one term: $2x$.
- The constant term: There is only one term: $9$.

Thus, combining the like terms, we obtain:

$$
5x^3 - 2x^2 + 2x + 9.
$$

**Final Answer:**

The difference of the given polynomials is

$$
\boxed{5x^3 - 2x^2 + 2x + 9}.
$$