College

What is [tex] \left(3x^4 + 2x^2 - 6 \right) [/tex] subtracted from [tex] \left(4x^4 + 2x^2 - 6 \right) [/tex]?

A. [tex] x^4 [/tex]

B. [tex] -x^4 [/tex]

C. [tex] x^4 - x^2 - 3 [/tex]

D. [tex] 7x^4 - x^2 - 9 [/tex]

E. [tex] x^4 + 5x^2 - 9 [/tex]

Answer :

To find the expression for [tex]\((4x^4 + 2x^2 - 6)\)[/tex] subtracted by [tex]\((3x^4 + 2x^2 - 6)\)[/tex], follow these steps:

1. Start with the two given polynomials:
[tex]\[
\text{First polynomial: } 4x^4 + 2x^2 - 6
\][/tex]
[tex]\[
\text{Second polynomial: } 3x^4 + 2x^2 - 6
\][/tex]

2. To perform the subtraction, subtract each corresponding term of the second polynomial from the first polynomial:
[tex]\[
(4x^4 + 2x^2 - 6) - (3x^4 + 2x^2 - 6)
\][/tex]

3. Distribute the negative sign across the second polynomial:
[tex]\[
(4x^4 + 2x^2 - 6) - 3x^4 - 2x^2 + 6
\][/tex]

4. Combine like terms:
[tex]\[
4x^4 - 3x^4 + 2x^2 - 2x^2 - 6 + 6
\][/tex]

5. Simplify each group of like terms:
[tex]\[
\text{Combine } 4x^4 \text{ and } -3x^4: \quad 4x^4 - 3x^4 = x^4
\][/tex]
[tex]\[
\text{Combine } 2x^2 \text{ and } -2x^2: \quad 2x^2 - 2x^2 = 0
\][/tex]
[tex]\[
\text{Combine } -6 \text{ and } 6: \quad -6 + 6 = 0
\][/tex]

6. The resulting polynomial is:
[tex]\[
x^4 + 0 + 0 = x^4
\][/tex]

So, the polynomial [tex]\((3x^4 + 2x^2 - 6)\)[/tex] subtracted from [tex]\((4x^4 + 2x^2 - 6)\)[/tex] is [tex]\(\boxed{x^4}\)[/tex]. Thus, the correct answer is:

A) [tex]\(x^4\)[/tex]