Answer :
To express [tex]$93,\!000,\!000$[/tex] in scientific notation, we want a number in the form
[tex]$$
a \times 10^n,
$$[/tex]
where [tex]$1 \leq a < 10$[/tex] and [tex]$n$[/tex] is an integer.
1. Start with the number [tex]$93,\!000,\!000$[/tex].
2. To have the significand between 1 and 10, move the decimal point so that only one nonzero digit is to the left of the decimal. Moving the decimal point 7 places to the left turns [tex]$93,\!000,\!000$[/tex] into [tex]$9.3$[/tex].
3. Since we moved the decimal 7 places, we multiply by [tex]$10^7$[/tex]. This gives us the scientific notation:
[tex]$$
9.3 \times 10^7.
$$[/tex]
Thus, the scientific notation for [tex]$93,\!000,\!000$[/tex] is
[tex]$$
9.3 \times 10^7.
$$[/tex]
[tex]$$
a \times 10^n,
$$[/tex]
where [tex]$1 \leq a < 10$[/tex] and [tex]$n$[/tex] is an integer.
1. Start with the number [tex]$93,\!000,\!000$[/tex].
2. To have the significand between 1 and 10, move the decimal point so that only one nonzero digit is to the left of the decimal. Moving the decimal point 7 places to the left turns [tex]$93,\!000,\!000$[/tex] into [tex]$9.3$[/tex].
3. Since we moved the decimal 7 places, we multiply by [tex]$10^7$[/tex]. This gives us the scientific notation:
[tex]$$
9.3 \times 10^7.
$$[/tex]
Thus, the scientific notation for [tex]$93,\!000,\!000$[/tex] is
[tex]$$
9.3 \times 10^7.
$$[/tex]