Answer :
To find the force needed to give a 0.25 kg arrow an acceleration of 196 m/s², we use Newton's second law of motion. The law states that the force [tex]\(F\)[/tex] acting on an object is equal to the mass [tex]\(m\)[/tex] of the object multiplied by its acceleration [tex]\(a\)[/tex]:
[tex]\[ F = m \times a \][/tex]
Here's the step-by-step process:
1. Identify the mass and acceleration:
- Mass ([tex]\(m\)[/tex]) = 0.25 kg
- Acceleration ([tex]\(a\)[/tex]) = 196 m/s²
2. Plug these values into the formula:
[tex]\[ F = 0.25 \, \text{kg} \times 196 \, \text{m/s}^2 \][/tex]
3. Perform the multiplication:
[tex]\[ F = 49 \, \text{N} \][/tex]
So, the force needed to give a 0.25 kg arrow an acceleration of 196 m/s² is 49 N.
[tex]\[ F = m \times a \][/tex]
Here's the step-by-step process:
1. Identify the mass and acceleration:
- Mass ([tex]\(m\)[/tex]) = 0.25 kg
- Acceleration ([tex]\(a\)[/tex]) = 196 m/s²
2. Plug these values into the formula:
[tex]\[ F = 0.25 \, \text{kg} \times 196 \, \text{m/s}^2 \][/tex]
3. Perform the multiplication:
[tex]\[ F = 49 \, \text{N} \][/tex]
So, the force needed to give a 0.25 kg arrow an acceleration of 196 m/s² is 49 N.