Answer :
We start by breaking down each number based on its place value. We write
[tex]$$
36 = 30 + 6 \quad \text{and} \quad 42 = 40 + 2.
$$[/tex]
Next, we multiply each term from the first number by each term of the second number:
1. Multiply the tens of 36 and the tens of 42:
[tex]$$
30 \times 40 = 1200.
$$[/tex]
2. Multiply the tens of 36 by the ones of 42:
[tex]$$
30 \times 2 = 60.
$$[/tex]
3. Multiply the ones of 36 by the tens of 42:
[tex]$$
6 \times 40 = 240.
$$[/tex]
4. Multiply the ones of 36 by the ones of 42:
[tex]$$
6 \times 2 = 12.
$$[/tex]
Therefore, the partial products obtained in the multiplication are
[tex]$$
1200,\quad 60,\quad 240,\quad \text{and} \quad 12.
$$[/tex]
Among the provided options:
- Option A: [tex]$60$[/tex]
- Option B: [tex]$1200$[/tex]
- Option C: [tex]$140$[/tex]
- Option D: [tex]$150$[/tex]
- Option E: [tex]$240$[/tex]
- Option F: [tex]$1512$[/tex]
We see that the partial products [tex]$60$[/tex], [tex]$1200$[/tex], and [tex]$240$[/tex] match the options. The product [tex]$12$[/tex] is not among the choices.
Thus, the correct partial products are:
[tex]$$
60,\quad 1200,\quad \text{and} \quad 240.
$$[/tex]
[tex]$$
36 = 30 + 6 \quad \text{and} \quad 42 = 40 + 2.
$$[/tex]
Next, we multiply each term from the first number by each term of the second number:
1. Multiply the tens of 36 and the tens of 42:
[tex]$$
30 \times 40 = 1200.
$$[/tex]
2. Multiply the tens of 36 by the ones of 42:
[tex]$$
30 \times 2 = 60.
$$[/tex]
3. Multiply the ones of 36 by the tens of 42:
[tex]$$
6 \times 40 = 240.
$$[/tex]
4. Multiply the ones of 36 by the ones of 42:
[tex]$$
6 \times 2 = 12.
$$[/tex]
Therefore, the partial products obtained in the multiplication are
[tex]$$
1200,\quad 60,\quad 240,\quad \text{and} \quad 12.
$$[/tex]
Among the provided options:
- Option A: [tex]$60$[/tex]
- Option B: [tex]$1200$[/tex]
- Option C: [tex]$140$[/tex]
- Option D: [tex]$150$[/tex]
- Option E: [tex]$240$[/tex]
- Option F: [tex]$1512$[/tex]
We see that the partial products [tex]$60$[/tex], [tex]$1200$[/tex], and [tex]$240$[/tex] match the options. The product [tex]$12$[/tex] is not among the choices.
Thus, the correct partial products are:
[tex]$$
60,\quad 1200,\quad \text{and} \quad 240.
$$[/tex]