Answer :
To solve the question of which expression is equivalent to [tex]\(5.8 + 1.157\)[/tex], we first need to calculate the sum:
- [tex]\(5.8 + 1.157 = 6.957\)[/tex].
Next, we'll evaluate each of the expressions given to see which one equals [tex]\(6.957\)[/tex]:
1. Calculate [tex]\(0.58 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.00504\)[/tex].
2. Calculate [tex]\(5.8 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.0504\)[/tex].
3. Calculate [tex]\(58 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.504\)[/tex].
4. Calculate [tex]\(580 \div 115\)[/tex]:
- This expression equals approximately [tex]\(5.043\)[/tex].
After comparing all these results, none of the expressions [tex]\(0.58 \div 115\)[/tex], [tex]\(5.8 \div 115\)[/tex], [tex]\(58 \div 115\)[/tex], or [tex]\(580 \div 115\)[/tex] equals [tex]\(6.957\)[/tex].
Therefore, none of the provided expressions are equivalent to [tex]\(5.8 + 1.157\)[/tex]. The expressions are different based on the division results.
- [tex]\(5.8 + 1.157 = 6.957\)[/tex].
Next, we'll evaluate each of the expressions given to see which one equals [tex]\(6.957\)[/tex]:
1. Calculate [tex]\(0.58 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.00504\)[/tex].
2. Calculate [tex]\(5.8 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.0504\)[/tex].
3. Calculate [tex]\(58 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.504\)[/tex].
4. Calculate [tex]\(580 \div 115\)[/tex]:
- This expression equals approximately [tex]\(5.043\)[/tex].
After comparing all these results, none of the expressions [tex]\(0.58 \div 115\)[/tex], [tex]\(5.8 \div 115\)[/tex], [tex]\(58 \div 115\)[/tex], or [tex]\(580 \div 115\)[/tex] equals [tex]\(6.957\)[/tex].
Therefore, none of the provided expressions are equivalent to [tex]\(5.8 + 1.157\)[/tex]. The expressions are different based on the division results.