High School

Using the standard algorithm, which of these expressions is equivalent to [tex]$5.8 + 1.157$[/tex]?

A. [tex]$0.58 \div 115$[/tex]

B. [tex]$5.8 \div 115$[/tex]

C. [tex]$58 \div 115$[/tex]

D. [tex]$580 \div 115$[/tex]

Answer :

To solve the question of which expression is equivalent to [tex]\(5.8 + 1.157\)[/tex], we first need to calculate the sum:

- [tex]\(5.8 + 1.157 = 6.957\)[/tex].

Next, we'll evaluate each of the expressions given to see which one equals [tex]\(6.957\)[/tex]:

1. Calculate [tex]\(0.58 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.00504\)[/tex].

2. Calculate [tex]\(5.8 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.0504\)[/tex].

3. Calculate [tex]\(58 \div 115\)[/tex]:
- This expression equals approximately [tex]\(0.504\)[/tex].

4. Calculate [tex]\(580 \div 115\)[/tex]:
- This expression equals approximately [tex]\(5.043\)[/tex].

After comparing all these results, none of the expressions [tex]\(0.58 \div 115\)[/tex], [tex]\(5.8 \div 115\)[/tex], [tex]\(58 \div 115\)[/tex], or [tex]\(580 \div 115\)[/tex] equals [tex]\(6.957\)[/tex].

Therefore, none of the provided expressions are equivalent to [tex]\(5.8 + 1.157\)[/tex]. The expressions are different based on the division results.