Answer :
Answer:
Here's how to solve this triangle problem using the Law of Sines:
**1. Find angle C₁:**
* Law of Sines: sin(C)/c = sin(A)/a
* sin(C₁)/46 = sin(35°)/36
* sin(C₁) = (46 * sin(35°))/36
* sin(C₁) ≈ 0.735
* C₁ = arcsin(0.735) ≈ 47.4°
**2. Find angle B₁:**
* The angles in a triangle add up to 180°.
* B₁ = 180° - A - C₁
* B₁ = 180° - 35° - 47.4°
* B₁ ≈ 97.6°
**3. Find side b₁:**
* Law of Sines: b/sin(B) = a/sin(A)
* b₁/sin(97.6°) = 36/sin(35°)
* b₁ = (36 * sin(97.6°))/sin(35°)
* b₁ ≈ 61.8
**4. Check for a second triangle (ambiguous case):**
* Since sin(C) can be positive in both the first and second quadrants, there's a possibility of a second angle C₂.
* C₂ = 180° - C₁
* C₂ = 180° - 47.4°
* C₂ ≈ 132.6°
**5. Check if the second triangle is possible:**
* A + C₂ = 35° + 132.6° = 167.6°
* Since 167.6° < 180°, a second triangle *is* possible.
**6. Find angle B₂:**
* B₂ = 180° - A - C₂
* B₂ = 180° - 35° - 132.6°
* B₂ ≈ 12.4°
**7. Find side b₂:**
* Law of Sines: b/sin(B) = a/sin(A)
* b₂/sin(12.4°) = 36/sin(35°)
* b₂ = (36 * sin(12.4°))/sin(35°)
* b₂ ≈ 13.2
**Answers (B₁ > B₂):**
* B₁ ≈ 97.6°
* C₁ ≈ 47.4°
* b₁ ≈ 61.8
* B₂ ≈ 12.4°
* C₂ ≈ 132.6°
* b₂ ≈ 13.2
Step-by-step explanation: