Answer :
Let's solve the problem step-by-step:
1. Evaluate [tex]\( f(-1) \)[/tex]:
We are given the function [tex]\( f(x) = -8x + 2 \)[/tex].
To find [tex]\( f(-1) \)[/tex], substitute [tex]\(-1\)[/tex] for [tex]\( x \)[/tex] in the function:
[tex]\[
f(-1) = -8(-1) + 2
\][/tex]
[tex]\[
f(-1) = 8 + 2
\][/tex]
[tex]\[
f(-1) = 10
\][/tex]
2. Find the value(s) of [tex]\( x \)[/tex] for which [tex]\( f(x) = 66 \)[/tex]:
We need to solve for [tex]\( x \)[/tex] when [tex]\( f(x) = 66 \)[/tex].
Set the function equal to 66:
[tex]\[
-8x + 2 = 66
\][/tex]
First, subtract 2 from both sides:
[tex]\[
-8x = 64
\][/tex]
Now, divide both sides by [tex]\(-8\)[/tex]:
[tex]\[
x = -8
\][/tex]
So, the solution to the problem is:
- [tex]\( f(-1) = 10 \)[/tex]
- The value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 66 \)[/tex] is [tex]\( x = -8 \)[/tex].
1. Evaluate [tex]\( f(-1) \)[/tex]:
We are given the function [tex]\( f(x) = -8x + 2 \)[/tex].
To find [tex]\( f(-1) \)[/tex], substitute [tex]\(-1\)[/tex] for [tex]\( x \)[/tex] in the function:
[tex]\[
f(-1) = -8(-1) + 2
\][/tex]
[tex]\[
f(-1) = 8 + 2
\][/tex]
[tex]\[
f(-1) = 10
\][/tex]
2. Find the value(s) of [tex]\( x \)[/tex] for which [tex]\( f(x) = 66 \)[/tex]:
We need to solve for [tex]\( x \)[/tex] when [tex]\( f(x) = 66 \)[/tex].
Set the function equal to 66:
[tex]\[
-8x + 2 = 66
\][/tex]
First, subtract 2 from both sides:
[tex]\[
-8x = 64
\][/tex]
Now, divide both sides by [tex]\(-8\)[/tex]:
[tex]\[
x = -8
\][/tex]
So, the solution to the problem is:
- [tex]\( f(-1) = 10 \)[/tex]
- The value of [tex]\( x \)[/tex] for which [tex]\( f(x) = 66 \)[/tex] is [tex]\( x = -8 \)[/tex].