Answer :
Let's solve the equation [tex]\(\frac{1}{5} + s = \frac{32}{40}\)[/tex] and find the value of [tex]\(s\)[/tex].
### Part A: Find possible values of [tex]\(s\)[/tex].
To solve for [tex]\(s\)[/tex], we need to isolate it on one side of the equation. We start with:
[tex]\[
\frac{1}{5} + s = \frac{32}{40}
\][/tex]
First, convert [tex]\(\frac{1}{5}\)[/tex] to a fraction with a denominator of 40, to match [tex]\(\frac{32}{40}\)[/tex].
[tex]\[
\frac{1}{5} = \frac{8}{40}
\][/tex]
Now we have:
[tex]\[
\frac{8}{40} + s = \frac{32}{40}
\][/tex]
### Part B: Solve for [tex]\(s\)[/tex].
Subtract [tex]\(\frac{8}{40}\)[/tex] from both sides to solve for [tex]\(s\)[/tex]:
[tex]\[
s = \frac{32}{40} - \frac{8}{40}
\][/tex]
Calculate the right side:
[tex]\[
s = \frac{24}{40}
\][/tex]
Now, simplify the fraction [tex]\(\frac{24}{40}\)[/tex] by dividing both the numerator and the denominator by 8:
[tex]\[
s = \frac{3}{5}
\][/tex]
Therefore, the value of [tex]\(s\)[/tex] is [tex]\(\frac{3}{5}\)[/tex], which is also approximately 0.6.
### Part A: Find possible values of [tex]\(s\)[/tex].
To solve for [tex]\(s\)[/tex], we need to isolate it on one side of the equation. We start with:
[tex]\[
\frac{1}{5} + s = \frac{32}{40}
\][/tex]
First, convert [tex]\(\frac{1}{5}\)[/tex] to a fraction with a denominator of 40, to match [tex]\(\frac{32}{40}\)[/tex].
[tex]\[
\frac{1}{5} = \frac{8}{40}
\][/tex]
Now we have:
[tex]\[
\frac{8}{40} + s = \frac{32}{40}
\][/tex]
### Part B: Solve for [tex]\(s\)[/tex].
Subtract [tex]\(\frac{8}{40}\)[/tex] from both sides to solve for [tex]\(s\)[/tex]:
[tex]\[
s = \frac{32}{40} - \frac{8}{40}
\][/tex]
Calculate the right side:
[tex]\[
s = \frac{24}{40}
\][/tex]
Now, simplify the fraction [tex]\(\frac{24}{40}\)[/tex] by dividing both the numerator and the denominator by 8:
[tex]\[
s = \frac{3}{5}
\][/tex]
Therefore, the value of [tex]\(s\)[/tex] is [tex]\(\frac{3}{5}\)[/tex], which is also approximately 0.6.