High School

Use the cancellation of the prime factorization to rename each fraction to its lowest terms.

26. [tex]\frac{40}{60}[/tex]

27. [tex]\frac{18}{48}[/tex]

28. [tex]\frac{25}{45}[/tex]

29. [tex]\frac{40}{45}[/tex]

30. [tex]\frac{45}{60}[/tex]

31. [tex]\frac{24}{36}[/tex]

Answer :

Sure! Let's simplify each fraction to its lowest terms by canceling out the common prime factors.

26. [tex]\(\frac{40}{60}\)[/tex]

- Prime factorization of 40: [tex]\(2^3 \times 5\)[/tex]
- Prime factorization of 60: [tex]\(2^2 \times 3 \times 5\)[/tex]

The common factors are [tex]\(2^2\)[/tex] and 5. Cancel these out:

- [tex]\(\frac{40}{60} = \frac{2 \times 2 \times 5}{2 \times 2 \times 3 \times 5} = \frac{2}{3}\)[/tex]

27. [tex]\(\frac{18}{48}\)[/tex]

- Prime factorization of 18: [tex]\(2 \times 3^2\)[/tex]
- Prime factorization of 48: [tex]\(2^4 \times 3\)[/tex]

The common factors are [tex]\(2\)[/tex] and [tex]\(3\)[/tex]. Cancel these out:

- [tex]\(\frac{18}{48} = \frac{2 \times 3 \times 3}{2 \times 2 \times 2 \times 2 \times 3} = \frac{3}{8}\)[/tex]

28. [tex]\(\frac{25}{45}\)[/tex]

- Prime factorization of 25: [tex]\(5^2\)[/tex]
- Prime factorization of 45: [tex]\(3^2 \times 5\)[/tex]

The common factor is 5. Cancel this out:

- [tex]\(\frac{25}{45} = \frac{5 \times 5}{3 \times 3 \times 5} = \frac{5}{9}\)[/tex]

29. [tex]\(\frac{40}{45}\)[/tex]

- Prime factorization of 40: [tex]\(2^3 \times 5\)[/tex]
- Prime factorization of 45: [tex]\(3^2 \times 5\)[/tex]

The common factor is 5. Cancel this out:

- [tex]\(\frac{40}{45} = \frac{2 \times 2 \times 2 \times 5}{3 \times 3 \times 5} = \frac{8}{9}\)[/tex]

30. [tex]\(\frac{45}{60}\)[/tex]

- Prime factorization of 45: [tex]\(3^2 \times 5\)[/tex]
- Prime factorization of 60: [tex]\(2^2 \times 3 \times 5\)[/tex]

The common factors are 3 and 5. Cancel these out:

- [tex]\(\frac{45}{60} = \frac{3 \times 3 \times 5}{2 \times 2 \times 3 \times 5} = \frac{3}{4}\)[/tex]

31. [tex]\(\frac{24}{36}\)[/tex]

- Prime factorization of 24: [tex]\(2^3 \times 3\)[/tex]
- Prime factorization of 36: [tex]\(2^2 \times 3^2\)[/tex]

The common factors are [tex]\(2^2\)[/tex] and [tex]\(3\)[/tex]. Cancel these out:

- [tex]\(\frac{24}{36} = \frac{2 \times 2 \times 2 \times 3}{2 \times 2 \times 3 \times 3} = \frac{2}{3}\)[/tex]

So, the fractions in simplest form are:
- [tex]\(\frac{40}{60} = \frac{2}{3}\)[/tex]
- [tex]\(\frac{18}{48} = \frac{3}{8}\)[/tex]
- [tex]\(\frac{25}{45} = \frac{5}{9}\)[/tex]
- [tex]\(\frac{40}{45} = \frac{8}{9}\)[/tex]
- [tex]\(\frac{45}{60} = \frac{3}{4}\)[/tex]
- [tex]\(\frac{24}{36} = \frac{2}{3}\)[/tex]