Answer :
Using Binomial Theorem To Expand
Use this formula: (x − y)^n = C(n, 0) * x^n * y^0 + C(n, 1) * x^(n-1) * y^1 + C(n, 2) * x^(n-2) * y^2 + C(n, n-1) * x^1 * y^(n-1) + C(n, n) * x^0 * y^n
where C(n, k) represents the binomial coefficient "n choose k".
In this case, we have (x − 2)^6, so the binomial coefficients will come from Pascal's Triangle:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
Using the formula, we can expand (x − 2)^6 as follows:
C(6, 0) * x^6 * (-2)^0 + C(6, 1) * x^5 * (-2)^1 + C(6, 2) * x^4 * (-2)^2 + C(6, 3) * x^3 * (-2)^3 + C(6, 4) * x^2 * (-2)^4 + C(6, 5) * x^1 * (-2)^5 + C(6, 6) * x^0 * (-2)^6
Simplifying each term and combining like terms, we get:
1 * x^6 * 1 + 6 * x^5 * (-2) + 15 * x^4 * 4 + 20 * x^3 * (-8) + 15 * x^2 * 16 + 6 * x^1 * (-32) + 1 * x^0 * 64
Which further simplifies to:
x^6 - 12x^5 + 60x^4 - 160x^3 + 240x^2 - 192x + 64
Therefore, the correct expansion of (x − 2)^6 is:
C. x^6 - 12x^5 + 60x^4 - 160x^3 + 240x^2 - 192x + 64
MARK AS BRAINLIEST!!!