High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Use synthetic substitution to find [tex]$f(-5)$[/tex] and [tex]$f(2)$[/tex] for the function [tex]$f(x) = 3x^4 + x^3 - 2x^2 + x + 12$[/tex].

[tex]f(-5) = 1693[/tex]

[tex]f(2) = 62[/tex]

Answer :

To find the values of [tex]\( f(-5) \)[/tex] and [tex]\( f(2) \)[/tex] for the function [tex]\( f(x) = 3x^4 + x^3 - 2x^2 + x + 12 \)[/tex], we can use synthetic substitution, which is a method used to evaluate a polynomial at a given value of [tex]\( x \)[/tex].

Step-by-step solution for [tex]\( f(-5) \)[/tex]:

1. Set up the coefficients of the polynomial. The polynomial [tex]\( f(x) = 3x^4 + x^3 - 2x^2 + x + 12 \)[/tex] has coefficients: 3, 1, -2, 1, 12.

2. Synthetic substitution for [tex]\( x = -5 \)[/tex]:
- Start with the first coefficient: 3.
- Multiply it by [tex]\(-5\)[/tex] and add the next coefficient:
[tex]\[
(3) \times (-5) + 1 = -15 + 1 = -14
\][/tex]
- Multiply [tex]\(-14\)[/tex] by [tex]\(-5\)[/tex] and add the next coefficient:
[tex]\[
(-14) \times (-5) + (-2) = 70 - 2 = 68
\][/tex]
- Multiply 68 by [tex]\(-5\)[/tex] and add the next coefficient:
[tex]\[
(68) \times (-5) + 1 = -340 + 1 = -339
\][/tex]
- Multiply [tex]\(-339\)[/tex] by [tex]\(-5\)[/tex] and add the last coefficient:
[tex]\[
(-339) \times (-5) + 12 = 1695 + 12 = 1707
\][/tex]

So, [tex]\( f(-5) = 1707 \)[/tex].

Step-by-step solution for [tex]\( f(2) \)[/tex]:

1. Set up the coefficients of the polynomial. The polynomial [tex]\( f(x) = 3x^4 + x^3 - 2x^2 + x + 12 \)[/tex] has coefficients: 3, 1, -2, 1, 12.

2. Synthetic substitution for [tex]\( x = 2 \)[/tex]:
- Start with the first coefficient: 3.
- Multiply it by 2 and add the next coefficient:
[tex]\[
(3) \times 2 + 1 = 6 + 1 = 7
\][/tex]
- Multiply 7 by 2 and add the next coefficient:
[tex]\[
(7) \times 2 + (-2) = 14 - 2 = 12
\][/tex]
- Multiply 12 by 2 and add the next coefficient:
[tex]\[
(12) \times 2 + 1 = 24 + 1 = 25
\][/tex]
- Multiply 25 by 2 and add the last coefficient:
[tex]\[
(25) \times 2 + 12 = 50 + 12 = 62
\][/tex]

So, [tex]\( f(2) = 62 \)[/tex].

Therefore, the evaluated values are [tex]\( f(-5) = 1707 \)[/tex] and [tex]\( f(2) = 62 \)[/tex].