Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Use synthetic substitution to find [tex]$f(-3)$[/tex] and [tex]$f(4)$[/tex] for the function:

[tex]$f(x) = 3x^4 - 4x^3 + 3x^2 - 5x - 3$[/tex]

A. 390, 537
B. -390, -537
C. No solutions
D. 210, 178

Answer :

Let's use synthetic substitution to find [tex]\( f(-3) \)[/tex] and [tex]\( f(4) \)[/tex] for the function [tex]\( f(x) = 3x^4 - 4x^3 + 3x^2 - 5x - 3 \)[/tex].

### Synthetic Substitution for [tex]\( f(-3) \)[/tex]:

1. Write down the coefficients:
- The polynomial is [tex]\( 3x^4 - 4x^3 + 3x^2 - 5x - 3 \)[/tex].
- The coefficients are [tex]\( [3, -4, 3, -5, -3] \)[/tex].

2. Substitute [tex]\( x = -3 \)[/tex]:
- Begin with the first coefficient: [tex]\( 3 \)[/tex].
- Multiply by [tex]\( -3 \)[/tex], add the next coefficient:
- Step 1: [tex]\( 3 \)[/tex]
- Multiply: [tex]\( 3 \times (-3) = -9 \)[/tex]
- Add next coefficient: [tex]\( -9 + (-4) = -13 \)[/tex]
- Repeat the process:
- Step 2: [tex]\(-13 \times (-3) = 39\)[/tex], add 3: [tex]\( 39 + 3 = 42 \)[/tex]
- Step 3: [tex]\( 42 \times (-3) = -126\)[/tex], add (-5): [tex]\(-126 + (-5) = -131\)[/tex]
- Step 4: [tex]\(-131 \times (-3) = 393\)[/tex], add (-3): [tex]\(393 + (-3) = 390\)[/tex]

So, [tex]\( f(-3) = 390 \)[/tex].

### Synthetic Substitution for [tex]\( f(4) \)[/tex]:

1. Write down the coefficients again:
- Coefficients are [tex]\( [3, -4, 3, -5, -3] \)[/tex].

2. Substitute [tex]\( x = 4 \)[/tex]:
- Begin with the first coefficient: [tex]\( 3 \)[/tex].
- Multiply by [tex]\( 4 \)[/tex], add the next coefficient:
- Step 1: [tex]\( 3 \)[/tex]
- Multiply: [tex]\( 3 \times 4 = 12 \)[/tex]
- Add next coefficient: [tex]\( 12 + (-4) = 8 \)[/tex]
- Repeat the process:
- Step 2: [tex]\( 8 \times 4 = 32 \)[/tex], add 3: [tex]\( 32 + 3 = 35 \)[/tex]
- Step 3: [tex]\( 35 \times 4 = 140 \)[/tex], add (-5): [tex]\( 140 + (-5) = 135 \)[/tex]
- Step 4: [tex]\( 135 \times 4 = 540 \)[/tex], add (-3): [tex]\( 540 + (-3) = 537 \)[/tex]

So, [tex]\( f(4) = 537 \)[/tex].

Therefore, the values are [tex]\( f(-3) = 390 \)[/tex] and [tex]\( f(4) = 537 \)[/tex]. The correct answer is:

a. 390,537