College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Use synthetic division to divide [tex]f(x) = x^3 - 4x^2 - 47x + 210[/tex] by [tex]x - 5[/tex].

Use the result to find all zeros of [tex]f[/tex].

Answer :

To divide the polynomial [tex]\( f(x) = x^3 - 4x^2 - 47x + 210 \)[/tex] by [tex]\( x - 5 \)[/tex] using synthetic division and then find all the zeros of [tex]\( f(x) \)[/tex], follow these steps:

1. Set up synthetic division:

First, write down the coefficients of the polynomial [tex]\( f(x) = x^3 - 4x^2 - 47x + 210 \)[/tex]. They are [tex]\( 1, -4, -47, \)[/tex] and [tex]\( 210 \)[/tex].

Since we are dividing by [tex]\( x - 5 \)[/tex], use the zero of this binomial, which is [tex]\( 5 \)[/tex].

2. Perform synthetic division:

- Write [tex]\( 5 \)[/tex] on the left side and the coefficients [tex]\( 1, -4, -47, 210 \)[/tex] on the right side.
- Bring down the first coefficient, [tex]\( 1 \)[/tex].
- Multiply [tex]\( 5 \)[/tex] by the value you just brought down ([tex]\( 1 \)[/tex]) and write the result, [tex]\( 5 \)[/tex], under the next coefficient, [tex]\(-4\)[/tex].
- Add [tex]\(-4\)[/tex] and [tex]\(5\)[/tex] to get [tex]\(1\)[/tex]. Write this below the line.
- Repeat this process: multiply [tex]\(5\)[/tex] by [tex]\(1\)[/tex] to get [tex]\(5\)[/tex], add to [tex]\(-47\)[/tex] to get [tex]\(-42\)[/tex].
- Finally, multiply [tex]\(5\)[/tex] by [tex]\(-42\)[/tex] to get [tex]\(-210\)[/tex], add to [tex]\(210\)[/tex] to get [tex]\(0\)[/tex].

Here is the division set up:

```
5 | 1 -4 -47 210
| 5 5 -210
---------------------
1 1 -42 0
```

The bottom row gives us the coefficients of the quotient polynomial and shows the remainder. The quotient is [tex]\( x^2 + x - 42 \)[/tex] with a remainder of [tex]\( 0 \)[/tex].

3. Find the zeros of the polynomial [tex]\( f(x) \)[/tex]:

Since the remainder is [tex]\( 0 \)[/tex], [tex]\( x - 5 \)[/tex] is a factor. Therefore, [tex]\( 5 \)[/tex] is a zero of the polynomial.

Now, use the quotient [tex]\( x^2 + x - 42 \)[/tex] to find the other zeros. To do this, set the quadratic [tex]\( x^2 + x - 42 = 0 \)[/tex].

Solve the quadratic equation by factoring:

- Find two numbers that multiply to [tex]\(-42\)[/tex] and add to [tex]\(1\)[/tex]. These numbers are [tex]\(6\)[/tex] and [tex]\(-7\)[/tex].
- So, [tex]\( x^2 + x - 42 = (x + 7)(x - 6) \)[/tex].

Hence, the solutions are [tex]\( x = -7 \)[/tex] and [tex]\( x = 6 \)[/tex].

4. Conclusion:

The zeros of the polynomial [tex]\( f(x) = x^3 - 4x^2 - 47x + 210 \)[/tex] are [tex]\( -7, 5, \)[/tex] and [tex]\( 6 \)[/tex].