Answer :
To determine the number of moles in 151 grams of sulfur dioxide ([tex]$\mathrm{SO_2}$[/tex]), follow these steps:
1. First, calculate the molar mass of [tex]$\mathrm{SO_2}$[/tex]. Sulfur (S) has an atomic mass of approximately [tex]$32.06 \ \text{g/mol}$[/tex], and oxygen (O) has an atomic mass of [tex]$16.00 \ \text{g/mol}$[/tex]. Since there are two oxygen atoms, the molar mass is:
[tex]$$
\text{Molar mass of } \mathrm{SO_2} = 32.06 \ + \ 2(16.00) = 32.06 + 32.00 = 64.06 \ \text{g/mol}
$$[/tex]
2. Next, use the formula for moles:
[tex]$$
\text{moles} = \frac{\text{mass in grams}}{\text{molar mass in g/mol}}
$$[/tex]
Substitute the given mass and the molar mass:
[tex]$$
\text{moles} = \frac{151}{64.06} \approx 2.3571651576646895
$$[/tex]
3. Finally, round the result to three significant figures:
[tex]$$
\text{moles} \approx 2.357
$$[/tex]
Thus, 151 grams of [tex]$\mathrm{SO_2}$[/tex] is equal to [tex]$2.357$[/tex] moles.
1. First, calculate the molar mass of [tex]$\mathrm{SO_2}$[/tex]. Sulfur (S) has an atomic mass of approximately [tex]$32.06 \ \text{g/mol}$[/tex], and oxygen (O) has an atomic mass of [tex]$16.00 \ \text{g/mol}$[/tex]. Since there are two oxygen atoms, the molar mass is:
[tex]$$
\text{Molar mass of } \mathrm{SO_2} = 32.06 \ + \ 2(16.00) = 32.06 + 32.00 = 64.06 \ \text{g/mol}
$$[/tex]
2. Next, use the formula for moles:
[tex]$$
\text{moles} = \frac{\text{mass in grams}}{\text{molar mass in g/mol}}
$$[/tex]
Substitute the given mass and the molar mass:
[tex]$$
\text{moles} = \frac{151}{64.06} \approx 2.3571651576646895
$$[/tex]
3. Finally, round the result to three significant figures:
[tex]$$
\text{moles} \approx 2.357
$$[/tex]
Thus, 151 grams of [tex]$\mathrm{SO_2}$[/tex] is equal to [tex]$2.357$[/tex] moles.