Answer :
The volume of a cone is given by the formula
[tex]$$
V = \frac{1}{3}\pi r^2h.
$$[/tex]
We are provided with a volume of [tex]$147\pi$[/tex] cubic centimeters and a radius [tex]$r = 7$[/tex] cm. Substituting these values into the formula gives
[tex]$$
147\pi = \frac{1}{3}\pi (7)^2 h.
$$[/tex]
Notice that [tex]$(7)^2$[/tex] is [tex]$49$[/tex], so the equation becomes
[tex]$$
147\pi = \frac{1}{3}\pi \cdot 49 \cdot h.
$$[/tex]
The correct expression to find [tex]$h$[/tex] is
[tex]$$
147\pi = \frac{1}{3}\pi\left[7^2\right](h).
$$[/tex]
Thus, the appropriate multiple-choice option is the second one.
[tex]$$
V = \frac{1}{3}\pi r^2h.
$$[/tex]
We are provided with a volume of [tex]$147\pi$[/tex] cubic centimeters and a radius [tex]$r = 7$[/tex] cm. Substituting these values into the formula gives
[tex]$$
147\pi = \frac{1}{3}\pi (7)^2 h.
$$[/tex]
Notice that [tex]$(7)^2$[/tex] is [tex]$49$[/tex], so the equation becomes
[tex]$$
147\pi = \frac{1}{3}\pi \cdot 49 \cdot h.
$$[/tex]
The correct expression to find [tex]$h$[/tex] is
[tex]$$
147\pi = \frac{1}{3}\pi\left[7^2\right](h).
$$[/tex]
Thus, the appropriate multiple-choice option is the second one.