Answer :
To find the expression that can be used to determine [tex]\( h \)[/tex], the height of a cone with a given volume, let's start with the formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Where:
- [tex]\( V \)[/tex] is the volume of the cone,
- [tex]\( r \)[/tex] is the radius of the base of the cone,
- [tex]\( h \)[/tex] is the height of the cone.
We are given:
- The volume [tex]\( V = 147 \pi \)[/tex] cubic centimeters,
- The radius [tex]\( r = 7 \)[/tex] cm.
Substitute the given values into the formula:
[tex]\[ 147 \pi = \frac{1}{3} \pi (7)^2 h \][/tex]
Let's simplify this expression to validate it as follows:
1. Substitute [tex]\( r = 7 \)[/tex] into the equation. Square the radius:
[tex]\[ 7^2 = 49 \][/tex]
2. Substitute this back into the volume formula:
[tex]\[ 147 \pi = \frac{1}{3} \pi (49) h \][/tex]
3. Simplify further to match the provided expressions:
The correct form for the equation is:
[tex]\[ 147 \pi = \frac{1}{3} \pi (7^2) (h) \][/tex]
Thus, the expression that can be used to find [tex]\( h \)[/tex], the height of the cone, is:
[tex]\[ 147 \pi = \frac{1}{3} \pi \left(7^2\right) (h) \][/tex]
This matches the second option:
[tex]\[ 147 \pi = \frac{1}{3} \pi\left(7^2\right)(h) \][/tex]
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
Where:
- [tex]\( V \)[/tex] is the volume of the cone,
- [tex]\( r \)[/tex] is the radius of the base of the cone,
- [tex]\( h \)[/tex] is the height of the cone.
We are given:
- The volume [tex]\( V = 147 \pi \)[/tex] cubic centimeters,
- The radius [tex]\( r = 7 \)[/tex] cm.
Substitute the given values into the formula:
[tex]\[ 147 \pi = \frac{1}{3} \pi (7)^2 h \][/tex]
Let's simplify this expression to validate it as follows:
1. Substitute [tex]\( r = 7 \)[/tex] into the equation. Square the radius:
[tex]\[ 7^2 = 49 \][/tex]
2. Substitute this back into the volume formula:
[tex]\[ 147 \pi = \frac{1}{3} \pi (49) h \][/tex]
3. Simplify further to match the provided expressions:
The correct form for the equation is:
[tex]\[ 147 \pi = \frac{1}{3} \pi (7^2) (h) \][/tex]
Thus, the expression that can be used to find [tex]\( h \)[/tex], the height of the cone, is:
[tex]\[ 147 \pi = \frac{1}{3} \pi \left(7^2\right) (h) \][/tex]
This matches the second option:
[tex]\[ 147 \pi = \frac{1}{3} \pi\left(7^2\right)(h) \][/tex]