College

The value of [tex]$\Delta H^{\circ}$[/tex] for the reaction below is -186 kJ.

[tex] H_2(g) + Cl_2(g) \rightarrow 2 HCl (g) [/tex]

The value of [tex]$\Delta H^{\circ}_f$[/tex] for [tex]HCl (g)[/tex] is [tex]\quad[/tex] [tex]kJ/mol[/tex].

A. [tex]-3.72 \times 10^2[/tex]
B. [tex]-1.27 \times 10^2[/tex]
C. [tex]-93.0[/tex]
D. [tex]-186[/tex]
E. [tex]+186[/tex]

Answer: C

Answer :

Let's solve the problem step by step:

The given reaction is:

[tex]\[ H_2(g) + Cl_2(g) \rightarrow 2 HCl(g) \][/tex]

We are provided with the enthalpy change of the reaction, [tex]\(\Delta H^{\circ}\)[/tex], which is -186 kJ.

[tex]\[ \Delta H^{\circ} = -186 \text{ kJ} \][/tex]

This enthalpy change of -186 kJ is for the entire reaction as written, which produces 2 moles of HCl gas.

To find the standard enthalpy of formation ([tex]\(\Delta H_f^{\circ}\)[/tex]) for [tex]\(HCl(g)\)[/tex], we need to determine the enthalpy change per mole of [tex]\(HCl\)[/tex].

Since the reaction produces 2 moles of [tex]\(HCl(g)\)[/tex]:

[tex]\[ \Delta H_f^{\circ} (HCl) = \frac{\Delta H^{\circ}}{\text{Number of moles of } HCl} \][/tex]

Plugging in the given enthalpy change and the number of moles:

[tex]\[ \Delta H_f^{\circ} (HCl) = \frac{-186 \text{ kJ}}{2 \text{ moles}} \][/tex]

[tex]\[ \Delta H_f^{\circ} (HCl) = -93 \text{ kJ/mol} \][/tex]

Thus, the value of [tex]\(\Delta H_f^{\circ}\)[/tex] for [tex]\(HCl(g)\)[/tex] is [tex]\(-93.0\)[/tex] kJ/mol.

Therefore, the correct answer is:

C) [tex]\(-93.0\)[/tex] kJ/mol