College

The sum of a number, [tex]x[/tex], and [tex]\frac{1}{2}[/tex] is equal to 4. Which set of equations correctly represents [tex]x[/tex]?

A.
[tex]4 = \frac{1}{2} x[/tex]
[tex]x = 2[/tex]

B.
[tex]4 = \frac{1}{2} x[/tex]
[tex]x = 8[/tex]

C.
[tex]4 = x + \frac{1}{2}[/tex]
[tex]x = 4 \frac{1}{2}[/tex]

D.
[tex]4 = x + \frac{1}{2}[/tex]
[tex]x = 3 \frac{1}{2}[/tex]

Answer :

To solve the problem where the sum of a number [tex]\( x \)[/tex] and [tex]\(\frac{1}{2}\)[/tex] is equal to 4, we can set up the equation as follows:

1. Write the equation:

[tex]\[
x + \frac{1}{2} = 4
\][/tex]

2. Solve for [tex]\( x \)[/tex]:

To isolate [tex]\( x \)[/tex], subtract [tex]\(\frac{1}{2}\)[/tex] from both sides of the equation:

[tex]\[
x = 4 - \frac{1}{2}
\][/tex]

3. Calculate the value:

When you subtract [tex]\(\frac{1}{2}\)[/tex] from 4, you get:

[tex]\[
4 - \frac{1}{2} = 3.5
\][/tex]

So, the value of [tex]\( x \)[/tex] is 3.5.

Now, let's identify which set of equations correctly represents [tex]\( x \)[/tex]:

- The correct representation is the one that uses the equation [tex]\( x = 3.5 \)[/tex].

Hence, none of the given options exactly match, but the statement [tex]\( x = 3.5 \)[/tex] clearly corresponds to the correct solution.