College

The stopping distance (at some fixed speed) of regular tires on glare ice is a function of the air temperature [tex] F [/tex], in degrees Fahrenheit. This function is estimated by [tex] D(F) = 2F + 115 [/tex].

Find the following values:

- [tex] D(0) = 115 [/tex]
- [tex] D(-30) = 55 [/tex]
- [tex] D(11) = 137 [/tex]
- [tex] D(16) = \square [/tex]

Answer :

To solve for [tex]\( D(16) \)[/tex] using the function [tex]\( D(F) = 2F + 115 \)[/tex], follow these steps:

1. Identify the Function: The function given is [tex]\( D(F) = 2F + 115 \)[/tex]. This function helps estimate the stopping distance based on the air temperature [tex]\( F \)[/tex] in degrees Fahrenheit.

2. Substitute the Temperature: We need to find the stopping distance when the temperature [tex]\( F \)[/tex] is 16. So, substitute 16 for [tex]\( F \)[/tex] in the function.

3. Perform the Calculation:
[tex]\[
D(16) = 2 \times 16 + 115
\][/tex]

4. Multiply and Add:
- First, multiply 2 by 16:
[tex]\[
2 \times 16 = 32
\][/tex]
- Next, add the product to 115:
[tex]\[
32 + 115 = 147
\][/tex]

5. Conclusion: The stopping distance [tex]\( D(16) \)[/tex] is 147.

Therefore, the stopping distance when the temperature is 16 degrees Fahrenheit is 147.