Answer :
To solve for [tex]\( D(16) \)[/tex] using the function [tex]\( D(F) = 2F + 115 \)[/tex], follow these steps:
1. Identify the Function: The function given is [tex]\( D(F) = 2F + 115 \)[/tex]. This function helps estimate the stopping distance based on the air temperature [tex]\( F \)[/tex] in degrees Fahrenheit.
2. Substitute the Temperature: We need to find the stopping distance when the temperature [tex]\( F \)[/tex] is 16. So, substitute 16 for [tex]\( F \)[/tex] in the function.
3. Perform the Calculation:
[tex]\[
D(16) = 2 \times 16 + 115
\][/tex]
4. Multiply and Add:
- First, multiply 2 by 16:
[tex]\[
2 \times 16 = 32
\][/tex]
- Next, add the product to 115:
[tex]\[
32 + 115 = 147
\][/tex]
5. Conclusion: The stopping distance [tex]\( D(16) \)[/tex] is 147.
Therefore, the stopping distance when the temperature is 16 degrees Fahrenheit is 147.
1. Identify the Function: The function given is [tex]\( D(F) = 2F + 115 \)[/tex]. This function helps estimate the stopping distance based on the air temperature [tex]\( F \)[/tex] in degrees Fahrenheit.
2. Substitute the Temperature: We need to find the stopping distance when the temperature [tex]\( F \)[/tex] is 16. So, substitute 16 for [tex]\( F \)[/tex] in the function.
3. Perform the Calculation:
[tex]\[
D(16) = 2 \times 16 + 115
\][/tex]
4. Multiply and Add:
- First, multiply 2 by 16:
[tex]\[
2 \times 16 = 32
\][/tex]
- Next, add the product to 115:
[tex]\[
32 + 115 = 147
\][/tex]
5. Conclusion: The stopping distance [tex]\( D(16) \)[/tex] is 147.
Therefore, the stopping distance when the temperature is 16 degrees Fahrenheit is 147.