High School

The simplified form of the expression \(9x^2 - 5x^4 - (5x^3 - 7x^4)\) is:

A. \(9x^2 - 5x^4 - 5x^3 - 7x^4\)
B. \(9x^2 - 5x^4 + 5x^3 + 7x^4\)
C. \(9x^2 - 5x^4 + 5x^3 - 7x^4\)
D. \(9x^2 - 5x^4 - 5x^3 + 7x^4\)

Answer :

Final answer:

The simplified form of the expression 9x^2−5x^4−(5x^3−7x^4) is 9x^2−5x^4−5x^3+7x^4.

Explanation:

The simplified form of the expression 9x^2−5x^4−(5x^3−7x^4) is 9x^2−5x^4−5x^3+7x^4.

To simplify the expression, we distribute the negative sign to the terms inside the parentheses. This gives us 9x^2−5x^4−5x^3−(-7x^4). Simplifying further, we can combine like terms, which gives us 9x^2−5x^4−5x^3+7x^4.