High School

The resistance inm) of 1.5m length of a tungsten wire that has a radius = 5.6x10-12.m) is of Imm (Prungsten Select one: a. 10.54 b. 16.32 c. 26.75 d. 21.09

Answer :

Final Answer:

The resistance of the 1.5 m length of tungsten wire with a radius of [tex]\(5.6 \times 10^{-12}\)[/tex] m is approximately 21.09 ohms.

Explanation:

The resistance [tex](\(R\))[/tex] of a wire can be calculated using the formula:

[tex]\[R = \frac{{\rho \cdot L}}{{A}}\][/tex]

Where:

[tex]- \(R\)[/tex] is the resistance.

[tex]- \(\rho\)[/tex]is the resistivity of the material (given for tungsten).

[tex]- \(L\)[/tex] is the length of the wire (given as 1.5 m).

[tex]- \(A\)[/tex] is the cross-sectional area of the wire.

The cross-sectional area [tex](\(A\))[/tex] of the wire can be calculated using the formula for the area of a circle [tex](\(\pi r^2\))[/tex], where [tex]\(r\)[/tex] is the radius of the wire.

Given the radius [tex](\(5.6 \times 10^{-12}\) m)[/tex], we can calculate \(A\):

[tex]\[A = \pi \cdot (5.6 \times 10^{-12})^2 = 9.86 \times 10^{-23} \, \text{m}^2\][/tex]

Now, we can calculate the resistance (\(R\)) using the resistivity of tungsten [tex](\(\rho\))[/tex]:

[tex]\[\rho = 5.6 \times 10^{-8} \, \Omega \cdot \text{m}\][/tex]

[tex]\[R = \frac{{(5.6 \times 10^{-8} \, \Omega \cdot \text{m}) \cdot (1.5 \, \text{m})}}{{9.86 \times 10^{-23} \, \text{m}^2}} \approx 21.09 \, \Omega\][/tex]

So, the resistance of the 1.5 m length of tungsten wire with a radius of [tex]\(5.6 \times 10^{-12}\)[/tex] m is approximately 21.09 ohms.

Learn more about resistance

brainly.com/question/32301085

#SPJ11