Answer :
To find out how much air is contained in the glass display case, we need to calculate the volume of the space inside the case. Here are the steps:
1. Identify the external dimensions:
- Length: 22 inches
- Width: 15 inches
- Height: 12 inches
2. Consider the thickness of the glass:
- The glass is [tex]\(\frac{1}{2}\)[/tex] inch thick. Since the thickness is on all sides, we need to reduce the dimensions of the internal space by 1 inch (0.5 inch from each side).
3. Calculate the internal dimensions:
- Internal Length = External Length - 2 [tex]\(\times\)[/tex] Thickness
[tex]\[
22 - 2 \times 0.5 = 21 \text{ inches}
\][/tex]
- Internal Width = External Width - 2 [tex]\(\times\)[/tex] Thickness
[tex]\[
15 - 2 \times 0.5 = 14 \text{ inches}
\][/tex]
- Internal Height = External Height - 2 [tex]\(\times\)[/tex] Thickness
[tex]\[
12 - 2 \times 0.5 = 11 \text{ inches}
\][/tex]
4. Calculate the internal volume:
- Volume = Internal Length [tex]\(\times\)[/tex] Internal Width [tex]\(\times\)[/tex] Internal Height
[tex]\[
21 \times 14 \times 11 = 3234 \text{ cubic inches}
\][/tex]
So, the amount of air contained in the case is 3234 cubic inches.
1. Identify the external dimensions:
- Length: 22 inches
- Width: 15 inches
- Height: 12 inches
2. Consider the thickness of the glass:
- The glass is [tex]\(\frac{1}{2}\)[/tex] inch thick. Since the thickness is on all sides, we need to reduce the dimensions of the internal space by 1 inch (0.5 inch from each side).
3. Calculate the internal dimensions:
- Internal Length = External Length - 2 [tex]\(\times\)[/tex] Thickness
[tex]\[
22 - 2 \times 0.5 = 21 \text{ inches}
\][/tex]
- Internal Width = External Width - 2 [tex]\(\times\)[/tex] Thickness
[tex]\[
15 - 2 \times 0.5 = 14 \text{ inches}
\][/tex]
- Internal Height = External Height - 2 [tex]\(\times\)[/tex] Thickness
[tex]\[
12 - 2 \times 0.5 = 11 \text{ inches}
\][/tex]
4. Calculate the internal volume:
- Volume = Internal Length [tex]\(\times\)[/tex] Internal Width [tex]\(\times\)[/tex] Internal Height
[tex]\[
21 \times 14 \times 11 = 3234 \text{ cubic inches}
\][/tex]
So, the amount of air contained in the case is 3234 cubic inches.