College

The function [tex]f(t) = 349.2(0.98)^t[/tex] models the relationship between [tex]t[/tex], the time an oven spends cooling, and the temperature of the oven.

**Oven Cooling Time**

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Time (minutes)} & \text{Oven Temperature (degrees Fahrenheit)} \\
\hline
1 & f(t) \\
\hline
5 & 315 \\
\hline
10 & 285 \\
\hline
15 & 260 \\
\hline
20 & 235 \\
\hline
25 & 210 \\
\hline
\end{array}
\][/tex]

For which temperature will the model most accurately predict the time spent cooling?

A. 0

B. 100

C. 300

D. 400

Answer :

The function is based on experimental data collected for temperatures between [tex]$210^\circ\text{F}$[/tex] and [tex]$315^\circ\text{F}$[/tex]. Here is a detailed explanation:

1. The given table shows that when the oven cools, the observed temperatures range from [tex]$315^\circ\text{F}$[/tex] (at [tex]$t = 5$[/tex]) down to [tex]$210^\circ\text{F}$[/tex] (at [tex]$t = 25$[/tex]).

2. When using a model, predictions are most reliable within the range of the observed data. That is, predictions for temperatures within the interval
[tex]$$
[210^\circ\text{F},\, 315^\circ\text{F}]
$$[/tex]
are expected to be more accurate.

3. Among the candidate temperatures provided ([tex]$0^\circ\text{F}$[/tex], [tex]$100^\circ\text{F}$[/tex], [tex]$300^\circ\text{F}$[/tex], and [tex]$400^\circ\text{F}$[/tex]), only [tex]$300^\circ\text{F}$[/tex] lies within the measured interval from [tex]$210^\circ\text{F}$[/tex] to [tex]$315^\circ\text{F}$[/tex].

4. Therefore, the model will most accurately predict the time spent cooling when the oven has a temperature of
[tex]$$
300^\circ\text{F}.
$$[/tex]

Thus, the answer is [tex]$\boxed{300}$[/tex].