College

The expression [tex]$i^2(5x - 2i)^2$[/tex] is equivalent to:

1) [tex]$-25x^2 + 20xi - 4$[/tex]

2) [tex]$-25x^2 + 20x + 4$[/tex]

3) [tex]$25x^2 + 20xi + 4$[/tex]

4) [tex]$25x^3 + 4$[/tex]

Answer :

We want to simplify the expression

$$
i^2(5x-2i)^2,
$$

where we know that the imaginary unit $i$ satisfies

$$
i^2 = -1.
$$

Let’s go through the steps:

1. First, expand the square:

$$
(5x-2i)^2 = (5x)^2 - 2\,(5x)(2i) + (2i)^2.
$$

Compute each term:

- $(5x)^2 = 25x^2.$
- $-2\,(5x)(2i) = -20xi.$
- $(2i)^2 = 4i^2.$

So the expansion gives:

$$
(5x-2i)^2 = 25x^2 - 20xi + 4i^2.
$$

2. Next, substitute $i^2 = -1$ into the expression:

$$
4i^2 = 4(-1) = -4.
$$

Thus, we have:

$$
(5x-2i)^2 = 25x^2 - 20xi - 4.
$$

3. Now, multiply this result by $i^2$ (which is $-1$):

$$
i^2(5x-2i)^2 = -1 \cdot (25x^2 - 20xi - 4) = -25x^2 + 20xi + 4.
$$

So the simplified expression is

$$
-25x^2 + 20xi + 4.
$$

Now, let’s compare this result with the given options:

1) $-25x^2 + 20xi - 4$

2) $-25x^2 + 20x + 4$

3) $25x^2 + 20xi + 4$

4) $25x^3 + 4$

We see that none of these match exactly with our expression $-25x^2+20xi+4$. The first option has the wrong constant term (it has $-4$ instead of $+4$), the second option lacks the imaginary unit $i$ in the $20x$ term, and the third and fourth options have other discrepancies.

Therefore, none of the provided options is correct. The final answer is:

$$
0 \quad \text{(none of the options)}
$$