Answer :
Sure, let's solve the factorization step-by-step!
We need to find out which trinomial corresponds to the factorized expression [tex]\((2x + 7)(x + 5)\)[/tex]. Here’s how we do it:
1. Use the distributive property (FOIL method) to expand [tex]\((2x + 7)(x + 5)\)[/tex]:
[tex]\[
(2x + 7)(x + 5) = (2x \cdot x) + (2x \cdot 5) + (7 \cdot x) + (7 \cdot 5)
\][/tex]
2. Multiply each term:
[tex]\[
2x \cdot x = 2x^2
\][/tex]
[tex]\[
2x \cdot 5 = 10x
\][/tex]
[tex]\[
7 \cdot x = 7x
\][/tex]
[tex]\[
7 \cdot 5 = 35
\][/tex]
3. Add all these terms together:
[tex]\[
2x^2 + 10x + 7x + 35
\][/tex]
4. Combine like terms:
[tex]\[
2x^2 + (10x + 7x) + 35 = 2x^2 + 17x + 35
\][/tex]
So, the expanded trinomial is [tex]\(2x^2 + 17x + 35\)[/tex].
Now, let's match our result with the given options:
A. [tex]\(2x^2 + 2x + 35\)[/tex]
B. [tex]\(2x^2 + 17x + 35\)[/tex]
C. [tex]\(2x^2 + 10x + 35\)[/tex]
D. [tex]\(2x^2 + 12x + 35\)[/tex]
Clearly, option B ([tex]\(2x^2 + 17x + 35\)[/tex]) matches the expanded trinomial.
Therefore, the correct answer is:
[tex]\[
\boxed{B}
\][/tex]
We need to find out which trinomial corresponds to the factorized expression [tex]\((2x + 7)(x + 5)\)[/tex]. Here’s how we do it:
1. Use the distributive property (FOIL method) to expand [tex]\((2x + 7)(x + 5)\)[/tex]:
[tex]\[
(2x + 7)(x + 5) = (2x \cdot x) + (2x \cdot 5) + (7 \cdot x) + (7 \cdot 5)
\][/tex]
2. Multiply each term:
[tex]\[
2x \cdot x = 2x^2
\][/tex]
[tex]\[
2x \cdot 5 = 10x
\][/tex]
[tex]\[
7 \cdot x = 7x
\][/tex]
[tex]\[
7 \cdot 5 = 35
\][/tex]
3. Add all these terms together:
[tex]\[
2x^2 + 10x + 7x + 35
\][/tex]
4. Combine like terms:
[tex]\[
2x^2 + (10x + 7x) + 35 = 2x^2 + 17x + 35
\][/tex]
So, the expanded trinomial is [tex]\(2x^2 + 17x + 35\)[/tex].
Now, let's match our result with the given options:
A. [tex]\(2x^2 + 2x + 35\)[/tex]
B. [tex]\(2x^2 + 17x + 35\)[/tex]
C. [tex]\(2x^2 + 10x + 35\)[/tex]
D. [tex]\(2x^2 + 12x + 35\)[/tex]
Clearly, option B ([tex]\(2x^2 + 17x + 35\)[/tex]) matches the expanded trinomial.
Therefore, the correct answer is:
[tex]\[
\boxed{B}
\][/tex]