High School

The expression $2x^2 + 6x - 12 + 5(-3 - 2x)$ can be rewritten as:

1. $2x^2 + 4x - 27$
2. $2x^2 + 4x - 39$
3. $2x^2 - 4x - 27$
4. $2x^2 + 16x - 27$

Answer :

Let's simplify the expression step-by-step.

The original expression is:

[tex]2x^2 + 6x - 12 + 5(-3 - 2x)[/tex]

First, distribute the 5 across the terms inside the parentheses:

[tex]5(-3 - 2x) = 5 imes (-3) + 5 imes (-2x)[/tex]

This simplifies to:

[tex]-15 - 10x[/tex]

Now, substitute back into the original expression:

[tex]2x^2 + 6x - 12 - 15 - 10x[/tex]

Next, combine like terms:


  • Combine the [tex]x[/tex] terms: [tex]6x - 10x = -4x[/tex]

  • Combine the constant terms: [tex]-12 - 15 = -27[/tex]


So, the expression becomes:

[tex]2x^2 - 4x - 27[/tex]

Therefore, the correct rewritten expression is:

3. [tex]2x^2 - 4x - 27[/tex]