Answer :
To solve the problem, follow these steps:
1. Write the formula that relates density, mass, and volume:
[tex]$$\text{mass} = \text{density} \times \text{volume}.$$[/tex]
2. Substitute the given values into the formula. The density of ethanol is [tex]$0.798 \frac{g}{mL}$[/tex] and the volume is [tex]$28.6 \, mL$[/tex]:
[tex]$$\text{mass} = 0.798 \frac{g}{mL} \times 28.6 \, mL.$$[/tex]
3. Multiply the numbers:
[tex]$$\text{mass} \approx 22.8228 \, g.$$[/tex]
4. Round the result to 3 significant digits. Since the first two digits are "22", and the following digit is "8", rounding to 3 significant digits gives:
[tex]$$\text{mass} \approx 22.8 \, g.$$[/tex]
Thus, the mass of [tex]$28.6 \, mL$[/tex] of ethanol is approximately
[tex]$$22.8 \, g.$$[/tex]
1. Write the formula that relates density, mass, and volume:
[tex]$$\text{mass} = \text{density} \times \text{volume}.$$[/tex]
2. Substitute the given values into the formula. The density of ethanol is [tex]$0.798 \frac{g}{mL}$[/tex] and the volume is [tex]$28.6 \, mL$[/tex]:
[tex]$$\text{mass} = 0.798 \frac{g}{mL} \times 28.6 \, mL.$$[/tex]
3. Multiply the numbers:
[tex]$$\text{mass} \approx 22.8228 \, g.$$[/tex]
4. Round the result to 3 significant digits. Since the first two digits are "22", and the following digit is "8", rounding to 3 significant digits gives:
[tex]$$\text{mass} \approx 22.8 \, g.$$[/tex]
Thus, the mass of [tex]$28.6 \, mL$[/tex] of ethanol is approximately
[tex]$$22.8 \, g.$$[/tex]